With the right connections, anything is possible.

ChipSet Measurement Test Cables to 40 GHz Test Cables for Lightweight DUTs and Fixture Board Testing

- Triple Shielded
 - Low Loss
 - Ideal for light weight DUTs
 - Light Weight
 - Small Diameter
 - Precision Connectors

MegaPhase's ChipSet Measurement cable provides a smaller diameter solution for test environments including high density fixture boards and other board-launched connections. This low density dielectric cable offers several benefits including flexibility, low insertion loss, and low capacitance for low loss transfer of power.

Cable Construction

Dielectric:

Inner Conductor: Solid Ag-plated Cu **Boundless PTFE** Ag-plated Flat Cu Braid/ Outer Conductor: Polyamide Foil/ Ag-plated Round Braid

Standard Finish:

FEP (a wide variety of other protective finishes and armors available)

Available Connectors

2.4mm, 2.92mm, 3.5mm, SMA, TNC, Type N (maximum frequency dependent on cable; other connectors available)

122 Banner Road, Stroudsburg, PA 18360-6433 Tel: 570-424-8400 Solutions@MegaPhase.com | www.MegaPhase.com

Electrical Data

MegaPhase

Maximum Frequency: 40 GHz Impedance:

50 Ω nominal

Propagation Velocity: 75.5% nominal

Time Delay: 1.35 ns/ft (4.43 ns/m)

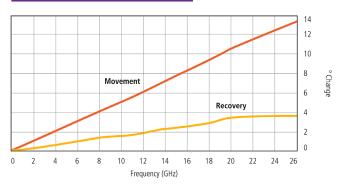
Shielding Effectiveness: -90 dB minimum (cable only)

Dielectric Withstanding Voltage: 5 kV at 60 Hz **Capacitance:**

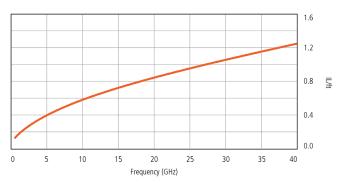
26.7 pF/ft (87.6 pF/m)

Mechanical Data

Finished Outer Diameter: 0.126 in (0.32 cm) **Static Bend Radius:** 0.6 in (1.524 cm) Weight: 0.02 lbs/ft (0.024 kg/m) **Operating Temp. Range:**


-67 to 392° F (-55 to 200° C)

With the right connections, anything is possible.

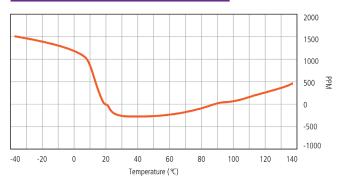

ChipSet Measurement Test Cables to 40 GHz (continued)

Phase Change vs. Flexure

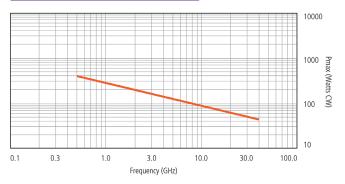
MegaPhase

Insertion Loss

Specifications


Frequency		Part	Atten	uation	Conn.	
GHz	Band	No.	dB/ft	dB/m	Loss dB	VSWR
0.3	UHF	CM4	0.092	0.302	0.006	1.10
0.5			0.119	0.391	0.009	
0.8			0.152	0.497	0.012	
1.0			0.170	0.558	0.014	
2.0	s		0.243	0.798	0.024	1.15
2.4			0.267	0.877	0.027	
3.0			0.300	0.985	0.032	
4.0	с	CM8	0.349	1.146	0.040	1.20
6.0			0.433	1.420	0.055	
8.0	x		0.505	1.656	0.070	1.25
10.0		CM18	0.569	1.867	0.084	1.30
12.4			0.639	2.098	0.101	1.35
15.0	Ku		0.710	2.328	0.118	
18.0			0.785	2.574	0.139	
20.0	K	CM26	0.832	2.729	0.152	
22.0			0.877	2.877	0.165	
24.0			0.921	3.021	0.178	
26.5			0.973	3.193	0.194	1.40
28.0	Ка	CM34	1.004	3.294	0.204	
30.0			1.004	3.425	0.217	
32.0			1.083	3.553	0.230	
34.0			1.121	3.677	0.243	1.45
36.0		CM40	1.158	3.799	0.256	
40.0			1.230	4.036	0.281	

Note: Typical Insertion Loss dB = (Attenuation)(Length) +2(Conn. Loss) Attenuation at any frequency = $(0.1654 \times \sqrt{freq GHz}) + (0.0046 \times freq GHz)$ With the right connections, anything is possible.


ChipSet Measurement Test Cables to 40 GHz (continued)

Phase Change vs. Temperature

MegaPhase

Cable CW Power Handling

Note: Data at ambient temperature and sea level. Power handling of a cable assembly is also connector dependent and includes variables such as altitude, temperature and system VSWR. See website for connector power handling standards, including altitude, temperature and VSWR derating.